
Nom : Lorente

Prénom : Loïc

N° Candidat : 02442761534

Réalisation professionnelle n°1

Ansible

BTS Services Informatiques aux Organisations

Option Solutions d’Infrastructure Systèmes et Réseaux

Session 2025

Ecole supérieure Aristée – La Valette (83)

 BTS SERVICES INFORMATIQUES AUX ORGANISATIONS SESSION 2025

ANNEXE 9-1-A : Fiche descriptive de réalisation professionnelle (recto)

Épreuve E6 - Administration des systèmes et des réseaux (option SISR)

DESCRIPTION D’UNE RÉALISATION PROFESSIONNELLE N° réalisation : 1

Nom, prénom : Lorente, loïc N° candidat : 02442761534

Épreuve ponctuelle Contrôle en cours de formation Date : ……/…..…/……….

Organisation support de la réalisation professionnelle

La réalisation professionnelle s’appuie sur une organisation fictive : le laboratoire
pharmaceutique GSB, né de la fusion de deux grandes entreprises du secteur. À la suite de
cette union, GSB cherche à optimiser les performances et l’efficacité de ses activités.

Intitulé de la réalisation professionnelle

Mise en place d’un serveur de configuration et de déploiement

Période de réalisation : 16/09/2024 au 20/12/2024 Lieu : Ecole Aristee, 83160 La Valette-du-Var

Modalité : Seul(e) En équipe

Compétences travaillées

 Concevoir une solution d’infrastructure réseau

 Installer, tester et déployer une solution d’infrastructure réseau

 Exploiter, dépanner et superviser une solution d’infrastructure réseau

Conditions de réalisation1 (ressources fournies, résultats attendus)

Ressources fournies :
Description générale GSB
Description du système informatique
Schéma réseau GSB et attendu
Cahier des charges

Résultats attendus :
Une solution d’infrastructure opérationnelle conformément au cahier des charges.
Documentation produite conformément aux règles et référentiels en vigueur dans l’organisme.

Description des ressources documentaires, matérielles et logicielles utilisées2

Documentation officielle Ansible : https://docs.ansible.com/
Documentation officielle Cisco : https://www.cisco.com/c/en/us/support/switches/category.html
Matériels : Dell PowerEdge R210 II, plusieurs switches CISCO, rtrout, proxylab, proxmox delta, Ordinateur
Portable
Logiciels utilisés : Ansible, mRemoteNG
Solution d’Hypervision exploitée : Proxmox
OS utilisé pour Ansible : Debian 12

1 En référence aux conditions de réalisation et ressources nécessaires du bloc « Conception et développement d'applications » prévues

dans le référentiel de certification du BTS SIO.
2 Les réalisations professionnelles sont élaborées dans un environnement technologique conforme à l’annexe II.E du référentiel du BTS

SIO.

https://docs.ansible.com/

Modalités d’accès aux productions3 et à leur documentation4

Access JURY EXTERNE via Teamviewer au WINSERV19-LOIC

ID : 1 855 637 382

PW : JURY.2025?

Depuis le WINSERV19-LOIC, sur le bureau mRemoteNG pour accéder à toutes les machines de l’infrastructure.
(Toutes les connexions sont déjà préconfigurées avec le bon protocole)
Sur le bureau se trouve aussi les raccourcis web vers PVE-DELTA, PBS-DELTA, PVE-LOIC, PROXYLAB.

Accès à leur documentation :

https://cloud.aristeecampus.org/index.php/s/AlP5I2PUVAz2Fds
Mot de passe : JURY.2025
Puis sélectionner RP N°1

Liste des équipements et accès INTERNE aux productions (via mRemoteNG)

Infrastructure principale (Machines physique)

Nom Adresse IP Identifiant Mot de Passe

PVE-DELTA 192.168.110.235:8006 root Aristee.2025

PBS-DELTA 192.168.110.231:8007 root Aristee.2025

SW-RS-DELTA 192.168.110.251 admin Aristee.2025

MUTLAB 192.168.110.1 admin Aristee.2025

SWITCH-BDS 192.168.110.254 admin Aristee.2025

PROXYLAB(pfSense) 192.168.110.100 admin Aristee.2025

Serveurs GSB (Proxmox VMs, OS : Windows Server et Debian)

Nom Adresse IP Identifiant Mot de Passe

SRV-DC 192.168.110.101 GSB\Administrateur Aristee.2025

SRV-DHCP 192.168.110.111 GSB\Administrateur Aristee.2025

INTRALAB 172.16.0.105 ansible Aristee.2025

BDMED 172.16.60.100 ansible Aristee.2025

BDMEDOCLAB 172.16.70.100 ansible Aristee.2025

BDPHARMA 172.16.70.110 ansible Aristee.2025

MESSAGELAB 172.16.0.20 ansible Aristee.2025

JURILAB 172.16.30.100 ansible Aristee.2025

NOTICELAB 172.16.40.100 ansible Aristee.2025

Environnement PVE-LOIC (Proxmox VMs, OS : Windows Server et Debian)

Nom Adresse IP Identifiant Mot de Passe

PVE-LOIC 192.168.110.232:8006 root Aristee.2025

WINSERV19-LOIC 192.168.110.20 Administrateur Aristee.2025

Ansible 192.168.110.23 ansible Aristee.2025

Zabbix 192.168.110.24 ansible Aristee.2025

3 Conformément au référentiel du BTS SIO « Dans tous les cas, les candidats doivent se munir des outils et ressources techniques

nécessaires au déroulement de l’épreuve. Ils sont seuls responsables de la disponibilité et de la mise en œuvre de ces outils et ressources.
La circulaire nationale d’organisation précise les conditions matérielles de déroulement des interrogations et les pénalités à appliquer aux

candidats qui ne se seraient pas munis des éléments nécessaires au déroulement de l’épreuve. ». Les éléments peuvent être un
identifiant, un mot de passe, une adresse réticulaire (URL) d’un espace de stockage et de la présentation de l’organisation du stockage.

1 155 801 935

https://cloud.aristeecampus.org/index.php/s/AlP5I2PUVAz2Fds

BTS SERVICES INFORMATIQUES AUX ORGANISATIONS SESSION 2025

ANNEXE 9-1-A : Fiche descriptive de réalisation professionnelle
(verso, éventuellement pages suivantes)

Épreuve E6 - Administration des systèmes et des réseaux (option SISR)

Descriptif de la réalisation professionnelle, y compris les productions réalisées et schémas explicatifs

Contexte GSB

Le laboratoire Galaxy Swiss Bourdin (GSB) est issu de la fusion entre le géant
Américain Galaxy (spécialisé dans le secteur des maladies virales dont le SIDA et les
Hépatites) et le conglomérat européen Swiss Bourdin (travaillant sur des médicaments plus
conventionnels), lui-même déjà union de trois petits laboratoires.

Après deux années de réorganisations internes, tant au niveau du personnel que du fonctionnement
administratif, l'entreprise GSB souhaite moderniser l'activité de visite médicale.

L’infrastructure actuelle :

Quel est le besoin ?

GSB doit gérer un parc informatique croissant, avec des configurations variées sur plusieurs sites.
L'administration manuelle devient complexe, augmentant les risques d'erreurs et de non-conformité.
Une solution centralisée et automatisée de gestion des configurations est nécessaire pour
standardiser les configurations des équipements présents dans le parc informatique, sécuriser le SI et
optimiser la gestion des infrastructures.

4 Lien vers la documentation complète, précisant et décrivant, si cela n’a été fait au verso de la fiche, la réalisation professionnelle, par

exemples service fourni par la réalisation, interfaces utilisateurs, description des classes ou de la base de données.

Solutions envisageables :

Pour automatiser la gestion de son infrastructure, GSB a étudié plusieurs outils reconnus dans le
domaine de l'orchestration et de la gestion de configuration :

• Puppet : robuste et largement adopté, mais nécessitant un agent sur chaque machine et une
infrastructure dédiée. Open Source / Payant (Puppet Enterprise)

• Chef : puissant et flexible, mais avec une courbe d’apprentissage plus complexe en raison de
son langage Ruby. Open Source / Payant (Chef Automate)

• SaltStack : rapide et efficace, mais reposant sur une architecture maître-minion qui peut être
plus lourde à déployer. Open Source / Payant (SaltStack Enterprise, racheté par VMware)

• Ansible : simple et agentless, basé sur SSH. 100% Open Source / Payant (Ansible Automation
Platform via Red Hat)

Solution retenue :

Après analyse, Ansible (sur VM Debian) a été choisi pour sa simplicité et son efficacité. Son
architecture agentless simplifie le déploiement en évitant l’installation et la gestion d’agents sur les
machines cibles, réduisant ainsi les contraintes de maintenance. De plus, son approche basée sur
l’idempotence garantit que les configurations sont appliquées de manière prévisible et sans effets
indésirables, évitant les modifications inutiles. L’utilisation de fichiers YAML et son intégration fluide
avec l’environnement existant permettent une gestion standardisée, évolutive et sécurisée de
l’infrastructure.

Qu’est-ce qu’Ansible ?
Ansible est un outil open-source d’automatisation permettant de gérer la configuration des systèmes,
le déploiement d’applications et l’orchestration d’infrastructures de manière simple et efficace. Il
repose sur une approche déclarative et utilise des fichiers YAML pour la configuration de rôles, tâches
et les exécuter via des fichiers appelés playbooks.

Histoire d’Ansible
Créé en 2012 par Michael DeHaan, Ansible a rapidement gagné en popularité grâce à sa simplicité et
son architecture sans agent. Il a été racheté par Red Hat en 2015, puis intégré dans l’écosystème IBM
après l’acquisition de Red Hat en 2019.

Fonctionnement d’Ansible
Ansible fonctionne en mode agentless en se connectant aux machines cibles via SSH ou WinRM. Il
applique des tâches définies dans des playbooks en suivant le principe d’idempotence, garantissant
que l’état final du système soit toujours conforme aux attentes, sans modifications inutiles.
Ansible utilise aussi des modules natif pour pouvoir par exemple, connaître les adresses IP des
machines cible et/ou connaître leur disponibilité sur le réseau.

Ansible dans le contexte GSB

La DSI de GSB m’a confié la mission d’installer et déployer Ansible pour répondre aux besoins
d’automatisation et de gestion centralisée de l’infrastructure, une solution permettant de standardiser
les configurations et d’optimiser l’administration du parc informatique.
Les caractéristiques principales d’Ansible sont :

• Agentless : ne nécessite pas d’installation sur les machines cibles, simplifiant la gestion.

• Idempotence : garantit que chaque action n’est appliquée qu’en cas de besoin, évitant les
modifications inutiles.

• Déclaratif : utilise des fichiers YAML (playbooks) pour définir l’état souhaité des systèmes.

• Scalabilité : permet de gérer un grand nombre de machines avec une configuration
centralisée et flexible.

Infrastructure avec l’intégration d’ansible :

Installation et configuration de Ansible sur une VM Debian
Création et éxécution de playbooks

Introduction :

En tant qu’administrateur système et réseau chez GSB, j’ai mis en place Ansible sur une VM Debian 12
pour automatiser les tâches d’administration et de maintenance de l’infrastructure.
Cette VM sera positionner dans le VLAN 110 et aura comme adresse IP 192.168.110.23/24.
Le nom de cette machine sera « ansible-loic ».
Les commandes sur la machine ainsi que l’execution des playbooks seront réalisé via l’utilisateur
« ansible » qui fait partie du groupe « sudoers ».
J’effectue les mises à jour et je procède à l’installation de la solution.
Voici les étapes principales :

Installation d'Ansible

1. Installation d'Ansible avec sudo :

o Commande utilisée : sudo apt install ansible

o Permet d’installer Ansible via le gestionnaire de paquets apt.

Création d'un répertoire et vérification des fichiers

1. Création d'un répertoire nommé ansible :

o Commande utilisée : sudo mkdir ansible

o Cette commande crée un nouveau répertoire appelé ansible dans le répertoire
courant. Ce répertoire sera utilisé pour stocker les configurations Ansible.

2. Vérification des fichiers dans le répertoire courant :

o Commande utilisée : ls -lia

o La commande liste tous les fichiers et répertoires dans le répertoire courant, avec des
informations supplémentaires sur les permissions, les propriétaires, et les liens. Elle
montre que le répertoire ansible a bien été créé et qu'il est associé à l'utilisateur et au
groupe ansible.

L’arborescence du projet

Dans le cadre de ce projet Ansible, j’ai mis en place une structure claire et bien organisée qui respecte
les bonnes pratiques recommandées pour la gestion des projets Ansible. La structure du projet est
représentée ci-dessous.
Pour visualisé l’arborescence du contenu des dossiers, j’ai besoin d’une application nommée « tree ».
sudo apt install tree

Présentation de Tree

Le tree présenté reflète l'organisation du projet Ansible, qui repose sur les principes suivants :

1. Modularité : Chaque rôle et playbook est conçu pour être indépendant et réutilisable.

2. Séparation des responsabilités : Les fichiers et répertoires sont divisés selon leur fonction,
comme la configuration globale (fichier ansible.cfg), les playbooks, les inventaires et les rôles.

Structure détaillée avant la mise en place des playbooks :

1. Fichier ansible.cfg :

o Contient les configurations globales d’Ansible, comme le chemin de l'inventaire, les
options de connexion SSH et l'emplacement des rôles.

2. Répertoire inventory :

o Contient les fichiers d’inventaire, qui définissent les hôtes et groupes de serveurs à
gérer avec Ansible.

o Ici, un fichier production est utilisé pour identifier les cibles dans un environnement de
production.

3. Répertoire playbooks :

o Contient les fichiers YAML décrivant les séries d'actions à exécuter.

4. Répertoire roles :

o Ce répertoire est divisé en sous-répertoires représentant chaque rôle, tels que
commons, security, et services.

o Chaque rôle suit la structure standard d’Ansible :

▪ tasks/ : Contient les fichiers définissant les tâches principales.

▪ handlers/ : Décrit les actions déclenchées après une modification (par ex.
redémarrer un service).

▪ templates/ : Stocke les modèles Jinja2 pour générer des fichiers de
configuration.

▪ vars/ : Définit les variables spécifiques au rôle.

Cette organisation structurée constitue une base solide pour les parties suivantes, où je détaillerai le
fonctionnement des trois playbooks principaux et leurs dépendances.

Pour pouvoir faire en sorte que ansible puisse communiquer avec les machines cibles sans utilisation
de mot de passe à la connexion, il faut mettre en place un échange de clés entre le serveur Ansible et
les machines cibles avec l’utilisateur « ansible » présent sur toutes les machines.

Génération d'une paire de clés SSH avec ED25519 (Serveur
Ansible)

1. Génération de la clé SSH :

o Commande utilisée : ssh-keygen -t ed25519

o Cette commande génère une paire de clés SSH utilisant l'algorithme ED25519, qui est
plus performant et sécurisé que RSA pour les connexions SSH.

o Les clés sont sauvegardées dans le répertoire caché .ssh de l'utilisateur ansible sous
les noms id_ed25519 (clé privée) et id_ed25519.pub (clé publique).

2. Confirmation de la clé générée :

o L'identification (clé publique) est stockée et la clé privée est prête à être utilisée pour
l'authentification sur des serveurs distants.

Copie de la clé publique SSH et connexion SSH au serveur distant

1. Copie de la clé publique vers le serveur distant :

o Commande utilisée : ssh-copy-id ansible@192.168.110.166

o Cette commande copie la clé publique SSH (id_ed25519.pub) générée à l'étape
précédente sur le serveur distant, ici à l'adresse 192.168.110.166, dans le compte
utilisateur ansible.

2. Connexion au serveur distant :

o Commande utilisée : ssh ansible@192.168.110.166

o Cette commande teste la connexion SSH à partir de l'hôte local (192.168.110.23) vers
le serveur distant (192.168.110.166), en utilisant la clé SSH pour l'authentification.

o La connexion est réussie, ce qui signifie que la clé publique a été installée
correctement et qu'il n'est plus nécessaire de fournir un mot de passe.

Voici plusieurs playbooks mis en place avec leur description :

Playbook init_deb12.yml et ses dépendances

Introduction
Le playbook init_deb12.yml a pour objectif de préparer les serveurs Debian 12 en effectuant des
tâches essentielles telles que la mise à jour des paquets et l'installation des outils de base. Cette
étape constitue une base solide pour le déploiement d'autres services.

1. Structure du Playbook

• Nom du Playbook : Mise à jour des paquets sur les serveurs Debian et installation des
paquets de base.

• Hôtes ciblés : debian_test, qui représente les serveurs concernés dans l'inventaire.

• Privilèges élevés : Utilisation de become: yes pour exécuter les tâches avec les élévations
nécessaires.

• Rôles associés :

o update_deb12 : Gère la mise à jour des dépôts et des paquets.

o commons : Installe les paquets de base nécessaires à l'environnement.

2. Rôle commons

Le rôle commons est responsable de l'installation des outils courants et des dépendances pour les
serveurs Debian 12.

Principales tâches :

1. Mise à jour du cache APT :

o Actualise les dépôts pour garantir l'accès aux dernières versions des paquets.

2. Installation de paquets essentiels :

o curl : Pour le transfert de données via divers protocoles.

o ntp : Synchronisation de l'horloge système.

o wget : Téléchargement de fichiers.

o software-properties-common : Gestion avancée des dépôts.

o Dépendances Python pour MariaDB : Prépare l'environnement pour les futures bases
de données.

3. Rôle update_deb12

Le rôle update_deb12 garantit que les serveurs Debian 12 sont à jour, minimisant ainsi les
vulnérabilités.

Principales tâches :

1. Mise à jour des dépôts APT :

o Utilise update_cache: yes et force la mise à jour des paquets.

2. Mise à niveau des paquets :

o Effectue une mise à jour complète du système.

3. Gestion conditionnelle des redémarrages :

o Vérifie si un redémarrage est nécessaire après une mise à jour critique.

o Redémarre le serveur si nécessaire, avec un délai configuré.

4. Synthèse

Le playbook init_deb12.yml, combiné aux rôles commons et update_deb12, permet de :

• Préparer un environnement Debian 12 entièrement à jour et fonctionnel.

• Fournir une base fiable pour les déploiements futurs.

• Automatiser les étapes critiques de maintenance, comme les mises à jour et les redémarrages
conditionnels.

Playbook security_deb12.yml et ses dépendances

Introduction

Le playbook security_deb12.yml est conçu pour renforcer la sécurité des serveurs Debian 12. Il
applique des configurations de protection essentielles, comme la mise en place de Fail2Ban. Cette
étape garantit une défense robuste contre les intrusions.

1. Structure du Playbook

• Nom du Playbook : Configuration de la sécurité sur Debian 12.

• Hôtes ciblés : debian_test, représentant les serveurs devant être sécurisés.

• Privilèges élevés : Utilisation de become: yes pour appliquer les configurations.

• Rôle associé :

o security : Regroupe toutes les tâches nécessaires pour la sécurisation du système
(protection SSH, Fail2Ban, pare-feu, etc.).

2. Rôle security

Le rôle security applique des configurations essentielles pour protéger les serveurs Debian 12.

Principales tâches (tasks/main.yml) :

1. Installation de Fail2Ban :

o Installe le paquet fail2ban, un outil de protection contre les attaques par force brute.

2. Configuration de Fail2Ban :

o Utilise le modèle Jinja2 fail2ban.conf.j2 pour personnaliser les paramètres de sécurité.

o Déploie ce fichier dans /etc/fail2ban/jail.local.

3. Redémarrage du service :

o Redémarre le service Fail2Ban pour appliquer les nouvelles configurations.

3. Modèle fail2ban.conf.j2

Le fichier de modèle Jinja2 est utilisé pour personnaliser la configuration de Fail2Ban, tout en
permettant une réutilisation flexible.

Paramètres clés :

1. Globaux :

o E-mail d'alerte : Notifications envoyées à root@localhost.

o Temps de bannissement : Défini à 10 minutes par défaut (bantime = 600).

o Nombre de tentatives avant bannissement : Limité à 5 (maxretry = 5).

2. Listes d'adresses IP :

o Blanche (ignoreip) : Inclut 127.0.0.1 et 192.168.110.25.

o Noire (bannedips) : Blocage permanent des IP 192.168.50.1 et 192.168.50.25.

3. Services protégés :

o SSH : Protège le port 22 en activant les règles de Fail2Ban pour limiter les connexions.

o PAM Authentication : Applique des règles de sécurité similaires.

4. Synthèse
Le playbook security_deb12.yml et le rôle security apportent :

• Une sécurité renforcée grâce à Fail2Ban, protégeant SSH et PAM contre les attaques par
force brute.

• Une configuration flexible via le modèle Jinja2, permettant une adaptation rapide.

• Une automatisation complète, limitant les erreurs humaines dans la configuration de la
sécurité.

Voici le Tree complet après la mise en place des playbooks et
rôles mis en place :

Les trois playbooks principaux sont :

init_deb12.yml :
Initialisation des serveurs Debian 12.

security_deb12.yml :
Sécurisation des serveurs avec Fail2ban.

services_deb12.yml :
Installation et configuration des services Apache2 et
MariaDB.

Evolutions possible :

Ansible peut être utilisé pour :

• Déployer des services critiques, comme un serveur web ou un serveur de base de données,
nécessaires pour la communication et le marketing.

• Déployer des agents, comme des agents de serveurs de supervision par exemple.

Ce projet répond directement aux besoins du cahier des charges.
Les tests effectués sont concluants.
La solution est opérationnelle.

	9ef205e141017bced892c54bce0f6beef533d9c84647d50a0af00f93ae1ca817.pdf
	a465b201f500af0b835031df61028588fb4ca747ec5ea08df5c6b1c7d14f0978.pdf
	a0431aa1455bc7907312f9144f16dc2ec9deb61cae2768788c82870ee10f537d.pdf

